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ABSTRACT

This article introduces mathematical foundations of diffusion models.

1 DIFFUSION MODELS

The diffusion model originates from the molecular motion of thermodynamics, which degrades the
data distribution by gradually adding Gaussian noise and then uses a learnable model to recover it.
Compared to other generative models like Generative Adversarial Networks (GANs) Goodfellow
et al. (2014), Variational Autoencoders (VAEs), and flow models, the diffusion model is learned
by one network with high-dimensional latent variables in flexible architecture, avoiding unstable
training, mode collapse, and surrogated loss.

1.1 PROBLEM FORMULATION

Given a dataset X = {x1, x2, · · ·xn}, where each sample is drawn independently from an under-
lying data distribution p(x), the goal of generative learning is to fit a model to the data distribution
such that we can synthesize new data points at will by sampling from the distribution.

1.2 NOISE CONDITIONAL SCORE-BASED NETWORK (NCSN)

The Score Matching with Langevin Dynamics (SMLD) is one of the first representative works of
the diffusion model Song & Ermon (2019), which utilizes iterative Langevin dynamics to draw the
samples. Langevin dynamics provides a Monte Carlo Markov Chain (MCMC) procedure to sample
from a distribution p(x) with only its score function ∇x log p(x) Welling & Teh (2011). It initializes
the chain from an arbitrary prior distribution x0 ∼ π(x) and iterates as follows,

xi+1 ← xi + 󰂃∇x log p(x) +
√
2󰂃zi, (1)

where zi ∼ N(0, I). When 󰂃 → 0 and K → ∞, xK obtained from Equ. 1 converges to a sample
from p(x) under some regularity conditions.

In the perturbing process, SMLD adds a sequence of multi-scale random Gaussian noises to the
original data distribution p(x),

pσk
(x) =

󰁝
p(y)N(x; y,σ2

kI)dy, k = 1, 2, · · · ,K, (2)

The SMLD then approximates the score function ∇xpσk
(x) of each noise-perturbed distribution by

training a Noise Conditional Score-Based Network (NCSN) sθ(x, k). The score-matching objective
of an NCSN is to minimize the weighted sum of Fisher divergences for all noise scales,

L(θ) =

K󰁛

k=1

λ(k)Epσk
(x)[||∇x log pσk

(x)− sθ(x, k)||22], (3)

where λ(i) ∈ R>0 is a positive weighting function (λ(i) = σ2
k). After obtaining the score-based

model sθ(x, k), we can produce the samples from it by running the Langevin dynamics for k =
K,K − 1, · · · , 1 in sequence (so-called annealed Langevin dynamics).
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1.3 DENOISING DIFFUSION PROBABILISTIC MODEL (DDPM)

Compared to NCSN which uses the score-based function (though convertible), the Denoising Diffu-
sion Probabilistic Model (DDPM) reconstructs the samples from the noise according to variational
inference.

In the forward chain, the DDPM gradually perturbs the raw data distribution x0 ∼ q(x0) to converge
to the standard Gaussian distribution q(xk),

q(xk|xk−1) = N(xk;
󰁳
1− βkxk−1,βkI),

q(x1:K |x0) =

T󰁜

t=1

q(xk|xk−1),
(4)

where βk ∈ (0, 1) is the coefficient of noise added at step t. On the other hand, the reverse chain
seeks to train a parameterized Gaussian transition kernel with θ to recover the data distribution,

pθ(xk−1|xk) = N(xk−1;µθ(xk, k),σθ(xk, k)I),

pθ(x1:K |xk) =

T󰁜

t=1

pθ(xk−1|xk).
(5)

Our objective is to estimate the maximum likelihood of original distribution pθ(x0:K) by maximiz-
ing the variational lower bound Eq[

pθ(x0:K)
q(x1:K|x0

) ]. After parameterization Ho et al. (2020), we optimize
the loss function,

L(θ) = Ex0∼q(x0),󰂃∼N(0,I),k||󰂃− 󰂃θ(xk, k)||22, (6)
where 󰂃θ estimates the noise input. Once trained, we can sample x0 from Equ. 5.

1.4 SCORE-BASED GENERATIVE MODEL (SGM)

The Score-based Generative Model (SGM) using Stochastic Differential Equation (SDE) Song et al.
(2021) describes the diffusion process in continuous time steps with a standard Wiener process,
which unifies NCSN and DDPM. The forward diffusion process in infinitesimal time can be formally
represented as

dx = f(x, k)dk + σ(k)dw, (7)
where w denotes a standard Winener process and σ(·) denotes the diffusion coefficient, which is
supposed to be a scalar independent of x. The reserve SDE describes the diffusion process running
backward in time to generate new samples from the known prior xk Anderson (1982), which is

dx = [f(x, k)− σ(k)2∇x log pk(x)]dk + σ(k)dw̄, (8)

which incorporate a backward induction score function log pk(x). Similar to NCSN, the score
function can be approximated using a step-dependent score-based model sθ(x, k) with the score-
matching optimization objective Equ. 3.
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