
A BRIEF INTRODUCTION TO DEC-POMDP

Shuo Liu
Computer Science
Northeastern University
shuo.liu2@northeastern.edu

ABSTRACT

This article introduces Dec-POMDP, the computation, and planning methods.1

1 DEC-POMDP

Definition 1. A Dec-POMDP is a tuple 〈I,S, {Ai}, T, R, {Oi}, O,H, γ〉:

• I is a finite sets of agents, |I| = n;

• S is a set of states with designated initial state distribution b0;

• Ai is a set of actions for agent i with A .
= ×iAi the set of joint actions;

• T is the state transition probability function, T : S × A × S → [0, 1], that specifies the
probability of transitioning from state s ∈ S to s′ ∈ S when the actions a ∈ A are taken
by agents (i.e., T (s,a, s′) = P (s′|s, a));

• R is the joint reward function, where R: S × A → R;

• Oi is a set of observations for each agent i, with O .
= ×iOi the set of joint observations;

• O is an observation probability function, O: A × S × O, that specifies the probability of
seeing observation o′ ∈ O given the actions a ∈ A are taken and state s′ ∈ S is observed
(i.e., O(a, s′,o′) = P (o′|a, s′));

• H is the horizon (the number of steps until termination);

• γ is the discount factor for the return.

A solution to a Dec-POMDP is a joint policy π : Hi → Ai, ∀i ∈ I over joint observation-action
history h = {a0,o1, · · ·oH−1}, an optimal solution maximizes the expected return,

π∗ = argmax
π

E
󰁫󰁓H−1

t=0 R(h,π(h))
󰀏󰀏󰀏b0

󰁬
.

In Dec-POMDP, the Bellman recursive formulation of the history V-function is,

V π(h) =
󰁛

s

P (s|b0,h)
󰀥
R(s,π(h)) + γ

󰁛

s′

P (s′|s,π(h))
󰁛

o′

P (o′|π(h), s′)V π(h′)

󰀦

≡ R(h,π) + γ
󰁛

o′

P (o′|h,π)V π(h′),

(1)

the Bellman recursive formulation of the history-policy Q-function is,2

Qπ(h,π) =
󰁛

s

P (s|b0,h)
󰀥
R(s,π(h)) + γ

󰁛

s′

P (s′|s,π(h))
󰁛

o′

P (o′|π(h), s′)Qπ(h′,π(h′))

󰀦

≡ R(h,π) + γ
󰁛

o′

P (o′|h,π)Qπ(h′,π).

(2)

1This introduction is heavily based on Amato et al. (2013).
2The definition of the value function is pretty flexible, which can be based on various aspects, such as the

value of a state, a belief state, an observation, a state history, an observation history, an action (single-step
policy), a policy (action history), observation-action history, and their combinations.

1

2 SUBCLASSES

Centralized Control MMDP is a fully observable version of Dec-POMDP, but it does not specify
decentralized control. Dec-MDP assumes that the joint observations uniquely determine the state,
while agents still act with local observations. Similarly, MPOMDP does not specify whether the
control is decentralized, which could have a centralized policy H → A.

Independent Variables A decentralized control model might be factorized with independent
local variables, e.g., transition-independence (TI) T (s,a, s′) = Πn

i=1T (si, ai, s
′
i) and reward-

independence (RI) R(s,π) = fmono(〈R(si,πi)〉ni=1). Network-distributed POMDP (ND-POMDP)
represents the factored one with TI and block-RI, i.e., R(s,π) = fmono(〈R(si,N (i),πi,N (i))〉ni=1),
where N (i) are the neighbors of i.

Complexity The worst-case complexity of finite-horizon problems is: (by Amato et al. (2013))

Model Complexity
MDP P-complete
MMDP (Cen-MMDP) P-complete
Dec-MDP NEXP-complete
Dec-MDP with TI no RI NP-complete
Dec-MDP with RI no TI NEXP-complete
Dec-MDP with TI and RI P-complete
POMDP PSPACE-complete
MPOMDP (Cen-MPOMDP) PSPACE-complete
Dec-POMDP NEXP-complete
ND-POMDP NEXP-complete

Theorem 1. An MDP is P-complete in finite and infinite horizons Papadimitriou & Tsitsiklis (1987).
Theorem 2. A finite POMDP is PSPACE-complete Papadimitriou & Tsitsiklis (1987).
Theorem 3. The complexity of an infinite POMDP is undecidable Madani et al. (1999), leading to
the undecidability of the infinite Dec-POMDP complexity.
Theorem 4. A finite Dec-POMDPn󰃍2 is NEXP-complete, and a finite Dec-MDPn󰃍3 is also NEXP-
complete Bernstein et al. (2002).
Fact 1. A Dec-MDP with TI and RI can be solved independently, resulting in P-complete.
Theorem 5. A Dec-MDP with TI and joint reward is NP-complete, a Dec-MDP with RI but no TI
is NEXP-complete Becker et al. (2004)
Fact 2. An ND-POMDP has the same worst-case complexity as a Dec-POMDP Nair et al. (2005).

3 PLANNING METHODS

3.1 POLICY STRUCTURE

Calculating a shared belief state in Dec-POMDP is hard, because the policy can not be recovered
from the value function. The policies are normally maintained in a policy tree or FSC. Policies can
be extracted by starting at the root (or initial node) and continuing to the subtree (or next node) based
on observations, and can be evaluated by summing the rewards weighted by transition probability.3

(a) Policy tree. (b) FSC.

3Policy can also be represented by other forms, like approximating functions Sutton & Barto (2018), neural
networks, diffusion models Chi et al. (2024), etc.

2

3.2 OPTIMAL APPROACHES

Bottom-up DP uses joint belief to find optimal solutions with policy pruning Hansen et al. (2004).

V t+1(bt) = max
a∈A

󰀫
󰁛

s∈S
bt(s)

󰀥
R(s, a) +

󰁛

o∈O
P(o | s, a)V t(bt+1)

󰀦󰀬
. (3)

Algorithm 1 DP Backup with Policy Pruning in Dec-POMDP
Input: Depth-t policy trees Qt

i and value vectors V t
i for each i

1: Perform exhaustive backups to get Qt+1
i , and compute V t+1

i accordingly for each i
2: repeat
3: Find a policy tree qj ∈ Qt+1

i that satisfies ∃ vk ∈ {V t+1
i \ vj}, bt+1vk ≥ bt+1vj , ∀ bt+1

4: Qt+1
i ← {Qt+1

i \ qj}, and V t+1
i ← {V t+1

i \ vj} accordingly
5: until no more pruning for all i

Output: Depth-t+ 1 policy trees Qt+1
i and value vectors V t+1

i for each i

Top-down The policy tree can also be built using heuristic search like MAA* Szer et al. (2005).

Algorithm 2 MAA* Heuristic Search
Initialize: Joint policy tree root Π ← ×iAi

Input: Depth-t joint policy tree Π

1: Select a∗ = argmaxa∈Π FH(b0, a) (heuristic and value)
2: Expand a∗ to a⊛, and Π ← {Π ∪ a⊛}
3: for Each a ∈ Π do
4: if FH(s0, a⊛) 󰃍 FH(s0, a) then
5: Π ← {Π \ a}
6: end if
7: end for
8: if a∗ is fully expanded then
9: Π ← {Π \ a∗}

10: end if
Input: Updated joint policy set Π.

3.3 APPROXIMATION APPROACHES

The algorithms below improve scalability to larger problems over optimal methods, but do not pos-
sess any bounds on solution quality.

MBDP Memory-bounded dynamic programming (MBDP) techniques mitigate the scalability
problem of DP (which generates and evaluates all joint policy trees before pruning) by keeping
a fixed number of policy trees for each agent at each step Seuken & Zilberstein (2007a). Several ap-
proaches have improved on MBDP by limiting Seuken & Zilberstein (2007b) or compressing Carlin
& Zilberstein (2008) observations, replacing exhaustive backup with branch-and-bound search in
the space of joint policy trees Dibangoye et al. (2009) as well as constraint optimization Kumar &
Zilberstein (2010) and linear programming Wu et al. (2010) to increase the efficiency of selecting
the best trees at each step.

JESP The joint equilibrium search for policies (JESP) Nair et al. (2003) uses alternating best re-
sponse. Initial policies are generated for all agents, and then all but one is held fixed. The remaining
agent can then calculate the best response (local optimum) to the fixed policies. The policy of this
agent becomes fixed and the next agent calculates the best response. These best-response calcula-
tions to fixed other agent policies continue until no agent changes its policy.

3

REFERENCES

Christopher Amato, Girish Chowdhary, Alborz Geramifard, N. Kemal re, and Mykel J. Kochen-
derfer. Decentralized control of partially observable markov decision processes. In 52nd IEEE
Conference on Decision and Control, pp. 2398–2405, 2013. doi: 10.1109/CDC.2013.6760239.

Raphen Becker, Shlomo Zilberstein, Victor Lesser, and Claudia V. Goldman. Solving transition
independent decentralized markov decision processes. Journal of Artificial Intelligence Research,
22:423–455, 2004.

Daniel S. Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. The complexity of
decentralized control of markov decision processes. Mathematics of Operations Research, 27(4):
819–840, 2002.

A. Carlin and S. Zilberstein. Value-based observation compression for dec-pomdps. In Proceedings
of the Seventh International Conference on Autonomous Agents and Multiagent Systems, 2008.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. The Inter-
national Journal of Robotics Research, 2024.

J. S. Dibangoye, A.-I. Mouaddib, and B. Chaib-draa. Point-based incremental pruning heuristic for
solving finite-horizon dec-pomdps. In Proceedings of the Eighth International Conference on
Autonomous Agents and Multiagent Systems, 2009.

Eric A Hansen, Daniel S Bernstein, and Shlomo Zilberstein. Dynamic programming for partially
observable stochastic games. In AAAI, volume 4, pp. 709–715, 2004.

A. Kumar and S. Zilberstein. Point-based backup for decentralized pomdps: complexity and new
algorithms. In Proceedings of the Ninth International Conference on Autonomous Agents and
Multiagent Systems, pp. 1315–1322, 2010.

Omid Madani, Steve Hanks, and Anne Condon. On the undecidability of probabilistic planning and
infinite-horizon partially observable markov decision problems. AAAI ’99/IAAI ’99, pp. 541548.
American Association for Artificial Intelligence, 1999. ISBN 0262511061.

Ranjit Nair, Milind Tambe, Makoto Yokoo, David Pynadath, and Stacy Marsella. Taming decentral-
ized pomdps: Towards efficient policy computation for multiagent settings. In IJCAI, volume 3,
pp. 705–711, 2003.

Ranjit Nair, Milind Tambe, Makoto Yokoo, David V. Pynadath, and Stacy Marsella. Networked dis-
tributed pomdps: A synthesis of distributed constraint optimization and pomdps. In Proceedings
of the 20th National Conference on Artificial Intelligence (AAAI-05), pp. 133–139. AAAI Press,
2005.

Christos H. Papadimitriou and John N. Tsitsiklis. The complexity of markov decision processes.
Mathematics of Operations Research, 12(3):441–450, 1987. doi: 10.1287/moor.12.3.441.

Sven Seuken and Shlomo Zilberstein. Memory-bounded dynamic programming for decpomdps.
Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI), pp.
2009–2015, 2007a.

Sven Seuken and Shlomo Zilberstein. Improved memory-bounded dynamic programming for de-
centralized pomdps. pp. 344–351, 2007b.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press, 2nd
edition, 2018.

Daniel Szer, François Charpillet, and Shlomo Zilberstein. Maa*: A heuristic search algorithm for
solving decentralized pomdps. In Proceedings of the 21st Conference on Uncertainty in Artificial
Intelligence (UAI), pp. 576–590. AUAI Press, 2005.

F. Wu, S. Zilberstein, and X. Chen. Point-based policy generation for decentralized pomdps. In Pro-
ceedings of the Ninth International Conference on Autonomous Agents and Multiagent Systems,
pp. 1307–1314, 2010.

4

A COMPLEXITY CLASSES

Assuming c and k are constants, C is a complexity class, the table shows complexity terminologies.

P the set of problems solvable in polynomial time, e.g., O(nk)
NP the set of problems solvable nondeterministically in polynomial time
EXP the set of problems solvable in exponential time, e.g., O(cn

k

)
NEXP the set of problems solvable nondeterministically in exponential time
PSPACE the set of problems solvable in polynomial space (P and NP ⊂ PSPACE), e.g., O(cn

k

)
C-hard a problem that all problems in C are reducible to within polynomial time
C-complete a problem that is contained in C and C-hard

5

