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ABSTRACT

This article discusses the optimal Q-value function definition in Dec-POMDP.

1 NOTIONS

st the state at ¢ with problem horizon h

ot the joint observation of agents o' = (0%, ... 0ol ) at t

@) the joint observation space

gt the joint observation-action history until ¢, gt = (0°,a", ..., 0"
et the joint history space at ¢

ot the set of 6 consistent with policy

5t the decision rule (a temporal structure of policy) at ¢

ab* the optimal decision rule at ¢ following ¢ ~1*

5;’@ the optimal decision rule at ¢ following ' !

Al the decision rule space at ¢

Pt the past joint policy until ¢, 1t = §[0:*)

b+ the optimal past joint policy until ¢, ¢pt* = §l0:t)-*

Ph® the past joint policy until ¢ with non-optimal 1) ~! and optimal 6;;1@
g the past joint policy space at ¢

£t the subsequent joint policy from ¢, £t = §t:")

g the optimal subsequent joint policy from ¢, £¢ = §lt-"):*

ffp@ the optimal subsequent joint policy from ¢ following non-optimal
7r the joint pure policy 7 = 610"

T the joint optimal pure policy 7* = §[0:"):*

R(6%,4"1)  the immediate reward function following 1+

Q(6%,¢'1)  the history-policy value function following 1!+

Q*(6,4'*1)  the optimal history-policy value function following v+

the sequentially rational optimal history-policy value function following !




2 NORMATIVE OPTIMAL Q-VALUE FUNCTION

Definition 1. The optimal Q-value function Q* in Dec-POMDP, the expected cumulative reward
over time steps [t, h) induced by optimal joint policy m* , VOt € @w, LV e (b AY), s
defined as,

R(0", ¢t+1), t=h-1
* (0t t+1\ __ = o, -,
Q (9 ,'l,Z) ) = R(e Z P t+1|6t wﬂ-l) (9t+1771‘*(9t+1)). 0<t< h—1
ottle®
(1)

Here, m* (6%+1) = )!+2* because of the consistent optimality of policy.

Proposition 1. In Dec-POMDP, deriving an optimal policy from the normative optimal history-
policy value function defined in Equ. 1 is impractical (clarifying Sec. 4.3.3, Oliehoek et al. (2008)).

Proof. We check the optima in 2 steps. The independent and dependent variables are marked in red.

To calculate the Pareto optima of Bayesian game at ¢,

§"" = argmax > PO QA (v, "), )

oteofpt .

note that calculating 6** depends on 1h'* = §1%0-* and Q* (6", ).
According to Definition. 1, the optimal Bellman equation can be written as,
QO V) = R@ 0 + Y P g max @ (0, (01, 61), ()
ottleO

when 0 < ¢ < h—1. This indicates that Q* (¢, -) depends on 1) +1:* ! Consequently, calculating §**

inherently depends on 6[%t}* (includes itself), making it self-dependent and impractical to solve.?
O

3  SEQUENTIALLY RATIONAL OPTIMAL Q-VALUE FUNCTION

To make optimal Q-value in Dec-POMDP computable, Oliehoek et al. (2008) defined another form
of Q-value function and eliminated the dependency on past optimality.

Definition 2. The sequentially rational optimal Q-value function Q® in Dec-POMDP, the expected
cumulative reward over time steps [t,h) induced by optimal subsequent joint policy ffb’@, Vot e
6L, Yitt € Wt s defined as,

(@ r=h-1
t t -, -, -,
Q®(9 ’w + ) = R(9t7wt+1) + Z P(Ot+1|9t7¢t+1)Q®(9t+17¢t+2’®), 0<t<h-1
Ot+leo
4)

where wt+2,® _ (¢t+1,5;+1,®),v¢t+1 c ptt+l,

Note that the only difference of Q® from Q* is 1'*2®, consequently expanding Q*’s candidates of
history from §* € 67, . to 6 € 6%, and policy from i1 € (*, A?) to +! € (W, AY).

Beyond solving the problem of Proposition 1, another advantage of Q® is that it allows for the
computation of optimal subsequent policy gf;‘ following any past policy ¢. This is beneficial in
online applications where agents may occasionally deviate from the optimal policy.

'The dependency of P(o'** |§t, **1) is not a problem and can be solved just like how the stochasticity
P(s'"*1|s", a) tackled by double learning in Sec. 6.7, Sutton & Barto (2018).

2Single-agent (PO)MDP, where the belief states are acquirable, does not have such a problem because the
Q-value function is not necessarily history-dependent, thanks to Markovian property.



4  OPEN QUESTIONS

e We have seen some advantages of defining the optimal Q-value function as Q®, what are
the downsides to defining it this way (e.g., high computational costs)?
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