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ABSTRACT

This article discusses the optimal Q-value function definition in Dec-POMDP.

1 NOTIONS

st the state at t with problem horizon h

ot the joint observation of agents ot = 〈ot1, . . . , otn〉 at t

O the joint observation space
θt the joint observation-action history until t, θt = (o0, a0, . . . , ot)

Θt the joint history space at t
Θt

π the set of θt consistent with policy π

δt the decision rule (a temporal structure of policy) at t

δt,∗ the optimal decision rule at t following ψt−1,∗

δt,⊛ψ the optimal decision rule at t following ψt−1

∆t the decision rule space at t

ψt the past joint policy until t, ψt = δ[0,t)

ψt,∗ the optimal past joint policy until t, ψt,∗ = δ[0,t),∗

ψt,⊛ the past joint policy until t with non-optimal ψt−1 and optimal δt−1,⊛
ψ

Ψt the past joint policy space at t

ξt the subsequent joint policy from t, ξt = δ[t,h)

ξt,∗ the optimal subsequent joint policy from t, ξt = δ[t,h),∗

ξt,⊛ψ the optimal subsequent joint policy from t following non-optimal ψt

π the joint pure policy π = δ[0,h)

π∗ the joint optimal pure policy π∗ = δ[0,h),∗

R(θt,ψt+1) the immediate reward function following ψt+1

Q(θt,ψt+1) the history-policy value function following ψt+1

Q∗(θt,ψt+1) the optimal history-policy value function following ψt+1

Q⊛(θt,ψt+1) the sequentially rational optimal history-policy value function following ψt+1
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2 NORMATIVE OPTIMAL Q-VALUE FUNCTION

Definition 1. The optimal Q-value function Q∗ in Dec-POMDP, the expected cumulative reward
over time steps [t, h) induced by optimal joint policy π∗, ∀θt ∈ Θt

ψt,∗ , ∀ψt+1 ∈ (ψt,∗,∆t), is
defined as,

Q∗(θt,ψt+1) =






R(θt,ψt+1), t = h− 1

R(θt,ψt+1) +


ot+1∈O

P (ot+1|θt,ψt+1)Q∗(θt+1,π∗(θt+1)). 0  t < h− 1

(1)

Here, π∗(θt+1) ≡ ψt+2,∗ because of the consistent optimality of policy.
Proposition 1. In Dec-POMDP, deriving an optimal policy from the normative optimal history-
policy value function defined in Equ. 1 is impractical (clarifying Sec. 4.3.3, Oliehoek et al. (2008)).

Proof. We check the optima in 2 steps. The independent and dependent variables are marked in red.

To calculate the Pareto optima of Bayesian game at t,

δt,∗ = argmax
δt



θt∈Θt
ψt,∗

P (θt|ψt,∗)Q∗(θt, (ψt,∗, δt)), (2)

note that calculating δt,∗ depends on ψt,∗ = δ[0,t),∗ and Q∗(θt, ·).
According to Definition. 1, the optimal Bellman equation can be written as,

Q∗(θt,ψt+1) = R(θt,ψt+1) +


ot+1∈O

P (ot+1|θt,ψt+1)max
δt+1

Q∗(θt+1, (ψt+1,∗, δt+1)), (3)

when 0  t < h−1. This indicates that Q∗(θt, ·) depends on ψt+1,∗.1 Consequently, calculating δt,∗

inherently depends on δ[0,t],∗ (includes itself), making it self-dependent and impractical to solve.2

3 SEQUENTIALLY RATIONAL OPTIMAL Q-VALUE FUNCTION

To make optimal Q-value in Dec-POMDP computable, Oliehoek et al. (2008) defined another form
of Q-value function and eliminated the dependency on past optimality.
Definition 2. The sequentially rational optimal Q-value function Q⊛ in Dec-POMDP, the expected
cumulative reward over time steps [t, h) induced by optimal subsequent joint policy ξt,⊛ψ , ∀θt ∈
Θt

Ψt , ∀ψt+1 ∈ Ψt+1, is defined as,

Q⊛(θt,ψt+1) =






R(θt,ψt+1), t = h− 1

R(θt,ψt+1) +


ot+1∈O

P (ot+1|θt,ψt+1)Q⊛(θt+1,ψt+2,⊛), 0  t < h− 1

(4)
where ψt+2,⊛ = (ψt+1, δt+1,⊛

ψ ), ∀ ψt+1 ∈ Ψt+1.

Note that the only difference of Q⊛ from Q∗ is ψt+2,⊛, consequently expanding Q∗’s candidates of
history from θt ∈ Θt

ψt,∗ to θt ∈ Θt
Ψt and policy from ψt+1 ∈ (ψt,∗,∆t) to ψt+1 ∈ (Ψt,∆t).

Beyond solving the problem of Proposition 1, another advantage of Q⊛ is that it allows for the
computation of optimal subsequent policy ξt,∗ψ following any past policy ψt. This is beneficial in
online applications where agents may occasionally deviate from the optimal policy.

1The dependency of P (ot+1|θt,ψt+1) is not a problem and can be solved just like how the stochasticity
P (st+1|st, a) tackled by double learning in Sec. 6.7, Sutton & Barto (2018).

2Single-agent (PO)MDP, where the belief states are acquirable, does not have such a problem because the
Q-value function is not necessarily history-dependent, thanks to Markovian property.
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4 OPEN QUESTIONS

• We have seen some advantages of defining the optimal Q-value function as Q⊛, what are
the downsides to defining it this way (e.g., high computational costs)?

REFERENCES

Frans A. Oliehoek, Matthijs T. J. Spaan, and Nikos Vlassis. Optimal and approximate Q-value
functions for decentralized POMDPs. Journal of Artificial Intelligence Research, 32:289–353,
2008.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press, 2nd
edition, 2018.

3


