OPTIMAL Q-VALUE FUNCTIONS FOR DEC-POMDP

Shuo Liu Computer Science Northeastern University shuo.liu2@northeastern.edu

ABSTRACT

This article discusses the optimal Q-value function definition in Dec-POMDP.

1 NOTIONS

s^t th	he state at t with problem horizon h
o^t th	the joint observation of agents $o^t = \langle o_1^t, \dots, o_n^t \rangle$ at t
\mathcal{O} th	e joint observation space
$ec{ heta^t}$ th	he joint observation-action history until $t, \vec{ heta^t} = (o^0, a^0, \dots, o^t)$
$\vec{\Theta}^t$ th	he joint history space at t
$\vec{\Theta}^t_{\pi}$ th	the set of $\vec{\theta}^t$ consistent with policy π
δ^t th	the decision rule (a temporal structure of policy) at t
	the optimal decision rule at t following $\psi^{t-1,*}$
$\delta^{t, \circledast}_{\psi} \qquad \qquad ext{th}$	e optimal decision rule at t following ψ^{t-1}
Δ^t th	the decision rule space at t
ψ^t th	he past joint policy until $t, \psi^t = \delta^{[0,t)}$
$\psi^{t,*}$ th	the optimal past joint policy until $t, \psi^{t,*} = \delta^{[0,t),*}$
$\psi^{t,\circledast}$ th	he past joint policy until t with non-optimal ψ^{t-1} and optimal $\delta^{t-1,\circledast}_{\psi}$
Ψ^t th	he past joint policy space at t
ξ^t th	the subsequent joint policy from $t, \xi^t = \delta^{[t,h)}$
$\xi^{t,*}$ th	the optimal subsequent joint policy from $t, \xi^t = \delta^{[t,h),*}$
$\xi^{t, \circledast}_{\psi}$ th	he optimal subsequent joint policy from t following non-optimal ψ^t
π th	the joint pure policy $\pi = \delta^{[0,h)}$
π^* th	the joint optimal pure policy $\pi^* = \delta^{[0,h),*}$
$R(ec{ heta^t},\psi^{t+1})$ th	e immediate reward function following ψ^{t+1}
$Q(ec{ heta^t},\psi^{t+1})$ th	he history-policy value function following ψ^{t+1}
$Q^*(ec{ heta^t},\psi^{t+1})$ th	e optimal history-policy value function following ψ^{t+1}
$Q^{\circledast}(\vec{\theta^t},\psi^{t+1}) \text{th}$	he sequentially rational optimal history-policy value function following ψ^{t+1}

2 NORMATIVE OPTIMAL Q-VALUE FUNCTION

Definition 1. The optimal Q-value function Q^* in Dec-POMDP, the expected cumulative reward over time steps [t,h) induced by optimal joint policy π^* , $\forall \vec{\theta}^t \in \vec{\Theta}^t_{\psi^{t,*}}, \forall \psi^{t+1} \in (\psi^{t,*}, \Delta^t)$, is defined as,

$$Q^{*}(\vec{\theta^{t}}, \psi^{t+1}) = \begin{cases} R(\vec{\theta^{t}}, \psi^{t+1}), & t = h-1\\ R(\vec{\theta^{t}}, \psi^{t+1}) + \sum_{o^{t+1} \in \mathcal{O}} P(o^{t+1} | \vec{\theta^{t}}, \psi^{t+1}) Q^{*}(\vec{\theta^{t+1}}, \pi^{*}(\vec{\theta^{t+1}})). & 0 \leqslant t < h-1 \end{cases}$$
(1)

Here, $\pi^*(\vec{\theta}^{t+1}) \equiv \psi^{t+2,*}$ because of the consistent optimality of policy.

Proposition 1. In Dec-POMDP, deriving an optimal policy from the normative optimal historypolicy value function defined in Equ. 1 is impractical (clarifying Sec. 4.3.3, Oliehoek et al. (2008)).

Proof. We check the optima in 2 steps. The independent and dependent variables are marked in red. To calculate the Pareto optima of Bayesian game at t,

$$\delta^{t,*} = \operatorname*{argmax}_{\delta^t} \sum_{\vec{\theta^t} \in \vec{\Theta}^t_{\psi^{t,*}}} P(\vec{\theta^t} | \psi^{t,*}) Q^*(\vec{\theta^t}, (\psi^{t,*}, \delta^t)),$$
(2)

note that calculating $\delta^{t,*}$ depends on $\psi^{t,*} = \delta^{[0,t),*}$ and $Q^*(\vec{\theta^t}, \cdot)$.

According to Definition. 1, the optimal Bellman equation can be written as,

$$Q^*(\vec{\theta^t}, \psi^{t+1}) = R(\vec{\theta^t}, \psi^{t+1}) + \sum_{o^{t+1} \in \mathcal{O}} P(o^{t+1} | \vec{\theta^t}, \psi^{t+1}) \max_{\delta^{t+1}} Q^*(\vec{\theta^{t+1}}, (\psi^{t+1,*}, \delta^{t+1})), \quad (3)$$

when $0 \leq t < h-1$. This indicates that $Q^*(\vec{\theta}^t, \cdot)$ depends on $\psi^{t+1,*}$.¹ Consequently, calculating $\delta^{t,*}$ inherently depends on $\delta^{[0,t],*}$ (includes itself), making it self-dependent and impractical to solve.²

3 SEQUENTIALLY RATIONAL OPTIMAL Q-VALUE FUNCTION

To make optimal Q-value in Dec-POMDP computable, Oliehoek et al. (2008) defined another form of Q-value function and eliminated the dependency on past optimality.

Definition 2. The sequentially rational optimal Q-value function Q^{\circledast} in Dec-POMDP, the expected cumulative reward over time steps [t, h) induced by optimal subsequent joint policy $\xi_{\psi}^{t, \circledast}$, $\forall \vec{\theta}^t \in \vec{\Theta}_{\Psi^t}^t, \forall \psi^{t+1} \in \Psi^{t+1}$, is defined as,

$$Q^{\circledast}(\vec{\theta^{t}}, \psi^{t+1}) = \begin{cases} R(\vec{\theta^{t}}, \psi^{t+1}), & t = h - 1\\ R(\vec{\theta^{t}}, \psi^{t+1}) + \sum_{o^{t+1} \in \mathcal{O}} P(o^{t+1} | \vec{\theta^{t}}, \psi^{t+1}) Q^{\circledast}(\vec{\theta^{t+1}}, \psi^{t+2}, \circledast), & 0 \leqslant t < h - 1 \end{cases}$$
(4)

where
$$\psi^{t+2,\circledast} = (\psi^{t+1}, \delta^{t+1,\circledast}_{\psi}), \forall \ \psi^{t+1} \in \Psi^{t+1}$$

Note that the only difference of Q^{\circledast} from Q^* is $\psi^{t+2,\circledast}$, consequently expanding Q^* 's candidates of history from $\vec{\theta^t} \in \vec{\Theta}^t_{\psi^t,*}$ to $\vec{\theta^t} \in \vec{\Theta}^t_{\Psi^t}$ and policy from $\psi^{t+1} \in (\psi^{t,*}, \Delta^t)$ to $\psi^{t+1} \in (\Psi^t, \Delta^t)$.

Beyond solving the problem of Proposition 1, another advantage of Q^{\circledast} is that it allows for the computation of optimal subsequent policy $\xi_{\psi}^{t,*}$ following any past policy ψ^t . This is beneficial in online applications where agents may occasionally deviate from the optimal policy.

¹The dependency of $P(o^{t+1}|\vec{\theta}^t, \psi^{t+1})$ is not a problem and can be solved just like how the stochasticity $P(s^{t+1}|s^t, a)$ tackled by double learning in Sec. 6.7, Sutton & Barto (2018).

 $^{^{2}}$ Single-agent (PO)MDP, where the belief states are acquirable, does not have such a problem because the Q-value function is not necessarily history-dependent, thanks to Markovian property.

4 **OPEN QUESTIONS**

• We have seen some advantages of defining the optimal Q-value function as Q^{\circledast} , what are the downsides to defining it this way (e.g., high computational costs)?

References

- Frans A. Oliehoek, Matthijs T. J. Spaan, and Nikos Vlassis. Optimal and approximate Q-value functions for decentralized POMDPs. *Journal of Artificial Intelligence Research*, 32:289–353, 2008.
- Richard S. Sutton and Andrew G. Barto. *Reinforcement Learning: An Introduction*. MIT Press, 2nd edition, 2018.