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ABSTRACT

Constructing rewards is crucial yet challenging to achieve RL objectives. This post
explores how to guide the LLM optimization via a proper RLHF reward model.

1 REWARD MODELS IN RLHF

As LLMs scale, their raw outputs (optimized primarily for next-token prediction) often diverge from
expected traits. To enable RL fine-tuning from human feedbacks (RLHF), reward models are intro-
duced as trainable proxies for human preference. Once trained, it can generalize preference signals
to unseen inputs, making alignment more scalable by reducing reliance on slow and costly human
annotations. It also allows flexible fine-tuning toward different objectives, such as helpfulness, truth-
fulness, or safety.

A typical alignment pipeline consists of 3 stages: supervised fine-tuning (SFT), reward modeling,
and RL. After an initial SFT based on base transformer with curated human-labeled data, a reward
model is constructed to predict human preferences over model-generated responses. This model
is then used to guide further optimization by encouraging outputs that maximize the predicted re-
ward. For example, ChatGPT employs reward models trained on ranked annotations to guide its
generation toward preferred outputs Achiam et al. (2024); DeepSeek and LLaMA 2 include ex-
plicit reward modeling components in their alignment pipelines, using pairwise preferences to train
reward models that inform subsequent learning Shao et al. (2024); Touvron et al. (2023).

Figure 1: Role of the reward models in RLHF (reward model in blue).

2 ANTI-SYMMETRIC PREFERENCE MODELING

In this section, we introduce the mainstream methods that model rewards of LLM responses through
preference comparison.
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2.1 BT MODEL AND ITS RANKING EXTENSION

The original Bradley-Terry (BT) model posits that, given a pair of options i and j drawn from some
population, the probability of selecting i is,

Pr(i ≻ j) =
ui

ui + uj
=

exp(r(i))

exp(r(i)) + exp(r(j))
, (1)

where ui and uj are the respective utility or preference of options i and j, which commonly param-
eterized in the exponential form via rewards r(i) and r(j). It can be further extended to rank N
options, known as Plackett-Luce (PL) model,

Pr(i1 ≻ i2 ≻ · · · ≻ iN ) =

N

k=1

exp(r(ik))N
j=k exp(r(ij))

. (2)

BT model is anti-symmetric, which means the preference between two responses depends only on
the difference in their reward values. It satisfies Pr(yi ≻ yj) = 1 − Pr(yj ≻ yi), and the log-

odds of preference is anti-symmetric: log


Pr(yi≻yj)
Pr(yj≻yi)


= r(x, yi)− r(x, yj). This structure ensures

consistent and transitive pairwise comparisons, making BT suitable for preference modeling. This
is initially used to rank sports teams and players, i.e., Elo rating system.

2.2 REWARD MODELING WITH PAIRWISE PREFERENCES (BT MODEL)

Inferring a reward model using the BT framework can be formulated as a parameter estimation
problem, where the objective is to recover latent reward values for candidate responses based on
observed pairwise comparisons.

Suppose a prompt x is associated with N candidate responses {y1, · · · , yN}, and human annotators
provide preference labels between some pairs. Ideally, given sufficiently many comparisons under
deterministic preference, the true reward values can be accurately inferred.1 In practice, however,
this inference is challenged by stochastic human behavior and sparse annotation.

Modeling Assumptions To make BT applicable to reward modeling under the practical condi-
tions, we adopt the following assumptions Sun et al. (2025):

1. Deterministic responses and rewards: For a given prompt x, a response y
is deterministically generated by a model. The oracle reward r(x, y) associated with each
prompt-response pair is fixed.

2. Deterministic annotators with bounded bias: When a an annotator A
compares responses, their preferences are deterministically depending on the comparison
of their biased evaluation of the reward,

1(yi ≻ yj  
decision

|x,A) = 1(r(x, yi) + b(x, yi;A) > r(x, yj) + b(x, yj ;A)
  

biased preference

). (3)

3. Order-preserving shaping: To address sparsity in comparisons, a known embed-
ding function Ψ is assumed to map each (x, y) pair into a feature space, with the constraint
that Ψ is order-preserving and does not affect optimization. High-dimensional embeddings
can be beneficial because they increase the likelihood that semantically similar prompt-
response pairs are mapped to nearby regions in the embedding space, thereby enabling
comparisons to generalize more effectively. Though, it also introduces potential issues
such as reward hacking (Section 5).

4. Imperfect human annotations: The annotator function h(x1, x2, y1, y2) pro-
vides feedback that possibly aligns with the oracle reward r(x, y). And it is harder to
assign correctly when the reward difference between two pairs is small,

P (h(x1, x2, y1, y2)(r(x1, y1)− r(x2, y2)) > 0 |∆r) = ξ(∆r), (4)

where ∆r := |r(x1, y1) − r(x2, y2)| is the reward difference, and ξ is any monotonic
increasing function to [0.5, 1].

1O(N logN) comparisons are sufficient for modeling rewards of N responses.
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Likelihood and Estimation Let each observed preference be denoted as a pair (i ≻ j), indicating
that yi is preferred over yj for prompt x. Under the BT model, the probability of this outcome is,

Pr(yi ≻ yj |x) =
exp(r(x, yi))

exp(r(x, yi)) + exp(r(x, yj))
. (5)

Given a dataset of M annotated comparisons C = {(im, jm)}Mm=1, the likelihood of observing these
preferences is,

L(r) =
M

m=1

exp(r(x, yim))

exp(r(x, yim)) + exp(r(x, yjm))
, (6)

and the corresponding log-likelihood is,

logL(r) =
M

m=1

[r(x, yim)− log (exp(r(x, yim)) + exp(r(x, yjm)))] . (7)

The optimal reward model is then obtained by maximizing the log-likelihood (MLE),

r∗ = argmax
r

logL(r). (8)

The solution is identifiable up to an additive constant and converges to the ground-truth rewards
under the assumptions above.

2.3 REWARD MODELING WITH RANKED PREFERENCES (PL MODEL)

While the BT model provides a principled way to infer rewards from pairwise preferences, real-
world systems can collect richer feedback in the form of ranked lists. Human annotators are pre-
sented with multiple responses to the same prompt and asked to provide an overall ranking. The
reward model is then trained to assign scores that agree with these rankings.

PL model Equation. 2 is used in a similar way for MLE, just like BT model. For a ranking of
alternatives (yi1 ≻ yi2 ≻ . . . ≻ yiN ) for prompt x, the probability under the PL model is,

Pr(yi1 ≻ yi2 ≻ . . . ≻ yiN |x) =
N−1

k=1

exp(r(x, yik))N
j=k exp(r(x, yij ))

. (9)

Given a dataset of M rankings C = {(yim1 , yim2 , . . . , yimNm
)}Mm=1, the likelihood is,

L(r) =
M

m=1

Nm−1

k=1

exp(r(x, yimk ))
Nm

j=k exp(r(x, yimj ))
. (10)

And the corresponding log-likelihood is,

logL(r) =
M

m=1

Nm−1

k=1



r(x, yimk )− log




Nm

j=k

exp(r(x, yimj ))







 . (11)

The optimal reward model is then obtained by MLE,

r∗ = argmax
r

logL(r). (12)

Preference modeling with the PL model is also anti-symmetric, swapping the order of two responses
in the ranking inverts the relative score difference in the likelihood expression.
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3 SYMMETRIC REWARD MODELING

As clich as it sounds, modeling rewards of LLM responses through symmetric preference signals is
indeed feasible. Symmetric models predict the reward for each prompt-response pair independently,
without reference to alternative responses.

3.1 REGRESSION-BASED REWARD MODEL

A common symmetric approach is to train a regression-based reward model on scalar human ratings.
Given a dataset {(xn, yn, sn)}Nn=1, where sn ∈ R denotes the score assigned to response yn for
prompt xn, the reward model r(x, y) is trained to minimize a squared loss:

Lreg =

N

n=1

(r(xn, yn)− sn)
2
. (13)

Such scalar-labeled data is available in open datasets like Anthropic HH, OpenAssistant,
and MT-Bench, where annotators assign numeric quality scores to individual responses without
ranking alternatives.

3.2 CLASSIFICATION-BASED REWARD MODEL

Alternatively, a reward model can be trained as a binary classifier to predict whether a response
satisfies certain alignment criteria (e.g., helpfulness or harmlessness). In this case, binary labels
sn ∈ {0, 1} indicate whether a response is considered acceptable, and the reward model is trained
using a standard cross-entropy loss with sigmoid σ activation,

Lcls = −
N

n=1

[sn log σ(r(xn, yn)) + (1− sn) log(1− σ(r(xn, yn)))] . (14)

4 OTHER REWARD MODELING TECHNIQUES

4.1 INVERSE REINFORCEMENT LEARNING

Inverse Reinforcement Learning (IRL) aims to recover an underlying reward function that explains
the behavior of an expert operating within a MDP. Formally, consider an MDP defined by the tu-
ple (X ,Y, T, γ), where X is the set of states, Y the set of actions, T (x′|x, y) the transition dy-
namics, and γ the discount factor. Given a set of expert trajectories τi, where each trajectory
τi = (x0, y0, x1, y1, . . . ), the goal of IRL is to infer a reward function r : X × Y → R such that
the optimal policy induced by this reward function explains the observed expert behavior. However,
this does not match seamlessly for reward modeling in LLM alignment due to,

• Unstructuredness: IRL assumes access to expert trajectories in a well-defined MDP,
which does not align with the unstructured, high-dimensional nature of language modeling.

• Incompatible feedback format: Human feedback for LLMs is typically given
as relative preferences between completions rather than as optimal action sequences.

• Huge computation: IRL methods are computationally expensive and require solving
RL problems repeatedly, which is impractical for large-scale language models.

4.2 BAYESIAN REWARD LEARNING

Bayesian reward learning explicitly represents uncertainty about the reward function by maintaining
a posterior distribution p(θ|D) over reward parameters θ, given observed demonstration data D.
Using Bayesian inference, it updates a prior distribution p(θ) to a posterior, p(θ|D) ∝ p(D|θ)p(θ)
allowing the derived policy to incorporate uncertainty (e.g., via posterior sampling). However,
Bayesian inference in high-dimensional reward spaces is computationally expensive and imprac-
tical for large-scale LLMs, since the exact posterior inference is often intractable.
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5 TAKEAWAYS IN REWARD DESIGN

Effective reward design is critical in guiding RL agents towards desirable behaviors. Several consid-
erations and specialized techniques help ensure robust and aligned outcomes. Here are some specific
takeaways should be considered when designing rewards.

Potential-based Reward Shaping Reward shaping accelerates learning by augmenting the orig-
inal reward with additional informative signals. Potential-based shaping ensures optimal policy
invariance by defining additional rewards through a state-dependent potential function Φ(s). Specif-
ically, the shaping reward is formulated as F (s, a, s′) = γΦ(s′)−Φ(s), thereby avoiding the intro-
duction of unintended behaviors or reward hacking vulnerabilities.

“Rubric engineering is the new prompt engineering.” – Will Brown.

Sparse vs. Dense Rewards The frequency and clarity of feedback significantly influence learning
efficiency and agent behaviors. Sparse rewards, given infrequently and typically at task completion,
mitigate reward hacking risks but pose exploration challenges Weng (2024).2 Conversely, dense re-
wards provide frequent feedback that facilitates exploration yet may inadvertently encourage reward
exploitation or unintended optimization behaviors.

Human-in-the-loop Reward Design Incorporating human judgments directly into reward sig-
nals enables iterative refinement, capturing nuanced and complex objectives not easily formalized.
Human-in-the-loop methods mitigate reward hacking by continuously aligning rewards with in-
tended outcomes through active human oversight.

Intrinsic vs. Extrinsic Rewards Intrinsic rewards originate internally, driven by agent behaviors
such as curiosity or novelty-seeking, promoting adaptive and exploratory capabilities. Extrinsic
rewards come externally, explicitly set by designers. A balanced integration of intrinsic and extrinsic
rewards supports robust agent behaviors through diversified motivational signals.
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A LLM TERMINOLOGY

Term Definition

Agent An autonomous entity capable of perceiving the environment, taking actions to
influence it, and proactively pursuing goals based on internal decision-making.

LLM Alignment Ensuring that large language models behave in accordance with human inten-
tions, ethical guidelines, and societal values.

Prompt Engineering Designing and refining input prompts to optimize the performance of a large
language model, ensuring it generates accurate, relevant, and useful responses.

Reward Modeling The process of defining and optimizing reward signals to train LLMs to exhibit
desired behaviors.

Hallucination When an LLM generates false or misleading information that is not supported
by its training data.

Jailbreaking Manipulating prompts to bypass safety mechanisms and make an LLM generate
restricted content.

Chain-of-Thought Prompting A prompting technique that encourages the model to break down reasoning into
intermediate steps, improving complex problem-solving accuracy.

Table 1: Terminology of LLM research.
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